Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response
نویسندگان
چکیده
The heat shock response (HSR) is a cellular stress response that senses protein misfolding and restores protein folding homeostasis, or proteostasis. We previously identified an HSR regulatory network in Caenorhabditis elegans consisting of highly conserved genes that have important cellular roles in maintaining proteostasis. Unexpectedly, the effects of these genes on the HSR are distinctly tissue-specific. Here, we explore this apparent discrepancy and find that muscle-specific regulation of the HSR by the TRiC/CCT chaperonin is not driven by an enrichment of TRiC/CCT in muscle, but rather by the levels of one of its most abundant substrates, actin. Knockdown of actin subunits reduces induction of the HSR in muscle upon TRiC/CCT knockdown; conversely, overexpression of an actin subunit sensitizes the intestine so that it induces the HSR upon TRiC/CCT knockdown. Similarly, intestine-specific HSR regulation by the signal recognition particle (SRP), a component of the secretory pathway, is driven by the vitellogenins, some of the most abundant secretory proteins. Together, these data indicate that the specific protein folding requirements from the unique cellular proteomes sensitizes each tissue to disruption of distinct subsets of the proteostasis network. These findings are relevant for tissue-specific, HSR-associated human diseases such as cancer and neurodegenerative diseases. Additionally, we characterize organismal phenotypes of actin overexpression including a shortened lifespan, supporting a recent hypothesis that maintenance of the actin cytoskeleton is an important factor for longevity.
منابع مشابه
Roles of the heat shock transcription factors in regulation of the heat shock response and beyond.
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, there...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملDown-Regulation of T Cell Function by Heat Shock-Induced Excretory Factor of Leishmania Major
Background: Despite demonstration of molecular and biochemical changes induced by heat shock on Leishmania, the immunological importance of such changes has not been elucidated. Objective: Studying the effect of two excretory factors prepared under heat shock and ambient temperature from Leishmania major on Balb/c splenocytes function. Methods: The parasites were cultured at 25°C and then sub...
متن کاملChronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach
Heat stress (HS) negatively affects human health, animal welfare, and livestock production. We analyzed the hepatic proteomes of finishing pigs subjected to chronic heat stress (HS), thermal neutral (TN), and restricted feed intake conditions, identifying differences between direct and indirect (via reduced feed intake) HS. Twenty-four castrated male pigs were randomly allocated to three treatm...
متن کاملTissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress.
All organisms respond to environmental, chemical and physiological stresses by enhanced synthesis of an evolutionarily conserved family of proteins known as heat shock proteins (HSPs) or stress proteins. Certain HSPs are also expressed constitutively during cell growth and development, and they function as molecular chaperones. The transcriptional regulation of hsp genes is mediated by the heat...
متن کامل